一種計算旋轉(zhuǎn)對稱布爾函數(shù)的漢明重量和非線性度的新方法
doi: 10.11999/JEIT 150164 cstr: 32379.14.JEIT 150164
-
2.
(信息工程大學(xué) 鄭州 450002) ②(數(shù)學(xué)工程與先進計算國家重點實驗室 無錫 214215) ③(洛陽外國語學(xué)校 洛陽 471003) ④(信息保障技術(shù)重點實驗室 北京 100072)
基金項目:
國家自然科學(xué)基金(61402522, 60803154, 61572027);數(shù)學(xué)工程與先進計算國家重點實驗室課題;信息保障技術(shù)重點實驗室開放基金(KJ-13-108)
A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions
Funds:
The National Natural Science Foundation of China (61402522, 60803154, 61572027)
-
摘要: 旋轉(zhuǎn)對稱布爾函數(shù)是一類重要的密碼學(xué)函數(shù),研究其重量和非線性度等密碼學(xué)性質(zhì)具有很好的理論價值。區(qū)別于已有的計算方法,該文利用特定的正規(guī)基把這些布爾函數(shù)的問題轉(zhuǎn)化為有限域上的指數(shù)和問題,得到了4 ?? n和n=2s 時一些二次旋轉(zhuǎn)對稱布爾函數(shù)的重量和非線性度的新結(jié)果。使用所提的方法,可以計算幾乎全部的二次旋轉(zhuǎn)對稱布爾函數(shù)的重量和非線性度。所提的新方法對于研究一般的旋轉(zhuǎn)對稱布爾函數(shù)具有一定的參考意義。
-
關(guān)鍵詞:
- 密碼學(xué) /
- 旋轉(zhuǎn)對稱布爾函數(shù) /
- 非線性度 /
- 漢明重量 /
- 正規(guī)基
Abstract: Rotation-symmetric Boolean function is a class of Boolean functions with good cryptographic properties, and researches on its weight and nonlinearity cryptographic properties have good theoretical value. Different from the conventional calculation method, in this paper, these problems are converted to the evaluation of exponential sum on finite fields with a specific normal basis. Some new results about the weight and nonlinearity of some rotation-symmetric Boolean functions of degree 2 with4 ?? n and n=2s are obtained. Using the proposed method, the weight and nonlinearity of almost all Rotation-symmetric Boolean functions of degree 2 can be evaluated. This new method is also interesting for studies on the other Boolean functions.-
Key words:
- Cryptography /
- Rotation-symmetric Boolean functions /
- Nonlinearity /
- Hamming weight /
- Normal bases
-
Pieprzyk J and Qu C X. Fast hashing and rotation-symmetric functions[J]. Journal of Universal Computer Science, 1999, 5(1): 20-31. Cusick T W and P. Fast evaluation, weights and nonlinearity of rotation-symmetric functions[J]. Discrete Mathematics, 2002, 258(1): 289-301. Ciungu L C. Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity[D]. [Ph.D. dissertation], University at Buffalo, 2010. Zhang X, Guo H, Feng R, et al.. Proof of a conjecture about rotation symmetric functions[J]. Discrete Mathematics, 2011, 311(14): 1281-1289. Wang B, Zhang X, and Chen W. The hamming weight and nonlinearity of a type of rotation symmetric Boolean function [J]. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 613-626. Cusick T W. Finding Hamming weights without looking at truth tables[J]. Cryptography and Communications, 2013, 5(1): 7-18. Brown A and Cusick T W. Equivalence classes for cubic rotation symmetric functions[J]. Cryptography and Communications, 2013, 5(2): 85-118. KV L, Sethumadhavan M, and Cusick T W. Counting rotation symmetric functions using Polyas theorem[J]. Discrete Applied Mathematics, 2014, 169: 162-167. Cusick T W and Cheon Y. Affine equivalence for cubic rotation symmetric Boolean functions with n=pq variables[J]. Discrete Mathematics, 2014, 327: 51-61. Cusick T W and Cheon Y. Affine equivalence of quartic homogeneous rotation symmetric Boolean functions[J]. Information Sciences, 2014, 259: 192-211. Kim H, Park S M, and Hahn S G. On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2[J]. Discrete Applied Mathematics, 2009, 157(2): 428-432. Liu H. On the weight and nonlinearity of quadratic rotation symmetric function with two MRS functions[J]. General Mathematics Notes, 2013, 16(1): 12-19. P and Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties[J]. Discrete Applied Mathematics, 2008, 156(10): 1567-1580. Hou X D. Explicit evaluation of certain exponential sums of binary quadratic functions[J]. Finite Fields and Their Applications, 2007, 13(4): 843-868. Weinberger M J and Lempel A. Factorization of symmetric circulant matrices in finite fields[J]. Discrete Applied Mathematics, 1990, 28(3): 271-285. Zhang X, Cao X, and Feng R. A method of evaluation of exponential sum of binary quadratic functions[J]. Finite Fields and Their Applications, 2012, 18(6): 1089-1103. -
計量
- 文章訪問數(shù): 1507
- HTML全文瀏覽量: 191
- PDF下載量: 597
- 被引次數(shù): 0