一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種計算旋轉(zhuǎn)對稱布爾函數(shù)的漢明重量和非線性度的新方法

張習(xí)勇 祁應(yīng)紅 高光普 李玉娟

張習(xí)勇, 祁應(yīng)紅, 高光普, 李玉娟. 一種計算旋轉(zhuǎn)對稱布爾函數(shù)的漢明重量和非線性度的新方法[J]. 電子與信息學(xué)報, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164
引用本文: 張習(xí)勇, 祁應(yīng)紅, 高光普, 李玉娟. 一種計算旋轉(zhuǎn)對稱布爾函數(shù)的漢明重量和非線性度的新方法[J]. 電子與信息學(xué)報, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164
張習(xí)勇, 祁應(yīng)紅, 高光普, 李玉娟. A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164
Citation: 張習(xí)勇, 祁應(yīng)紅, 高光普, 李玉娟. A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164

一種計算旋轉(zhuǎn)對稱布爾函數(shù)的漢明重量和非線性度的新方法

doi: 10.11999/JEIT 150164 cstr: 32379.14.JEIT 150164
基金項目: 

國家自然科學(xué)基金(61402522, 60803154, 61572027);數(shù)學(xué)工程與先進計算國家重點實驗室課題;信息保障技術(shù)重點實驗室開放基金(KJ-13-108)

A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions

Funds: 

The National Natural Science Foundation of China (61402522, 60803154, 61572027)

  • 摘要: 旋轉(zhuǎn)對稱布爾函數(shù)是一類重要的密碼學(xué)函數(shù),研究其重量和非線性度等密碼學(xué)性質(zhì)具有很好的理論價值。區(qū)別于已有的計算方法,該文利用特定的正規(guī)基把這些布爾函數(shù)的問題轉(zhuǎn)化為有限域上的指數(shù)和問題,得到了4 ?? n和n=2s 時一些二次旋轉(zhuǎn)對稱布爾函數(shù)的重量和非線性度的新結(jié)果。使用所提的方法,可以計算幾乎全部的二次旋轉(zhuǎn)對稱布爾函數(shù)的重量和非線性度。所提的新方法對于研究一般的旋轉(zhuǎn)對稱布爾函數(shù)具有一定的參考意義。
  • Pieprzyk J and Qu C X. Fast hashing and rotation-symmetric functions[J]. Journal of Universal Computer Science, 1999, 5(1): 20-31.
    Cusick T W and P. Fast evaluation, weights and nonlinearity of rotation-symmetric functions[J]. Discrete Mathematics, 2002, 258(1): 289-301.
    Ciungu L C. Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity[D]. [Ph.D. dissertation], University at Buffalo, 2010.
    Zhang X, Guo H, Feng R, et al.. Proof of a conjecture about rotation symmetric functions[J]. Discrete Mathematics, 2011, 311(14): 1281-1289.
    Wang B, Zhang X, and Chen W. The hamming weight and nonlinearity of a type of rotation symmetric Boolean function [J]. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 613-626.
    Cusick T W. Finding Hamming weights without looking at truth tables[J]. Cryptography and Communications, 2013, 5(1): 7-18.
    Brown A and Cusick T W. Equivalence classes for cubic rotation symmetric functions[J]. Cryptography and Communications, 2013, 5(2): 85-118.
    KV L, Sethumadhavan M, and Cusick T W. Counting rotation symmetric functions using Polyas theorem[J]. Discrete Applied Mathematics, 2014, 169: 162-167.
    Cusick T W and Cheon Y. Affine equivalence for cubic rotation symmetric Boolean functions with n=pq variables[J]. Discrete Mathematics, 2014, 327: 51-61.
    Cusick T W and Cheon Y. Affine equivalence of quartic homogeneous rotation symmetric Boolean functions[J]. Information Sciences, 2014, 259: 192-211.
    Kim H, Park S M, and Hahn S G. On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2[J]. Discrete Applied Mathematics, 2009, 157(2): 428-432.
    Liu H. On the weight and nonlinearity of quadratic rotation symmetric function with two MRS functions[J]. General Mathematics Notes, 2013, 16(1): 12-19.
    P and Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties[J]. Discrete Applied Mathematics, 2008, 156(10): 1567-1580.
    Hou X D. Explicit evaluation of certain exponential sums of binary quadratic functions[J]. Finite Fields and Their Applications, 2007, 13(4): 843-868.
    Weinberger M J and Lempel A. Factorization of symmetric circulant matrices in finite fields[J]. Discrete Applied Mathematics, 1990, 28(3): 271-285.
    Zhang X, Cao X, and Feng R. A method of evaluation of exponential sum of binary quadratic functions[J]. Finite Fields and Their Applications, 2012, 18(6): 1089-1103.
  • 加載中
計量
  • 文章訪問數(shù):  1507
  • HTML全文瀏覽量:  191
  • PDF下載量:  597
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-06-11
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回